Electromagnetic Waves

Amplitude Crest

Frequency

Interference

Longitudinal Wave

Electromagnetic Radiation

A form of energy that can move through the vacuum of space. (transverse waves)

The number of complete wavelengths that pass a point in a given time--measured in Hertz

the height of a wave from the origin to a crest, or from the origin to a trough

The interaction between waves that meet

The highest point of a transverse wave

The Doppler Effect for a Moving Sound Source
Change in the apparent frequency of a wave as observer and source move toward or away from each other

A wave in which the vibration of the medium is parallel to the direction the wave travels--also called compression waves

A wave that requires a medium through which to travel; it is carried by vibrations such as sound waves, can be either transverse or longitudinal waves
a form of energy that exhibits wavelike behavior as it travels through space; a kind of radiation including visible light, radio waves, gamma rays, and X-rays,

Medium	Sound Energy
Pitch	Transverse Wave
Rarefaction	
Resonance	
Simple Wave	

A form of energy that is made by vibrations and requires a medium in order to travel
Sound waves travel slower than light waves

Material through which a wave travels (air, liquid, or solids)

A wave that moves the medium in a direction perpendicular to the direction in which the wave travels
example: S-Wave that goes through Earth or electromagnetic waves

The perceived highness or lowness of a sound wave; depends on frequency--higher the frequency the higher the pitch

The lowest point of a transverse wave

A repeated back-and-forth or up-and-down motion

A phenomenon that occurs when two objects naturally vibrate at the same frequency

a repeating pattern with a specific amplitude, frequency, and wavelength

The wave is constrained to move along a line, instead of moving in other space.

Wavelength

Wave Speed

Wave speed equation

Horizontal distance between the crests or between the troughs of two adjacent waves

The speed at which a wave travels through a medium

$$
v=f \lambda
$$

$\mathrm{v}=$ velocity
$\mathrm{f}=$ frequency
$\lambda=$ wavelength
wave speed $=$ frequency \times wavelength
$v=f x \lambda$

